4767 Statistics 2

1	(i)			
			G1 For values of <i>a</i> G1 for values of <i>t</i> G1 for axes	[3]
	(ii)	a is independent, t is dependent since the values of a are not subject to random variation, but are determined by the runways which the pilot chooses, whereas the values of t are subject to random variation.	B1 E1dep E1dep	[3]
	(iii)	$\bar{a} = 900, \ \bar{t} = 855.2$ $b = \frac{S_{at}}{S_{aa}} = \frac{6037800 - 5987 \times 6300 / 7}{8190000 - 6300^2 / 7} = \frac{649500}{2520000} = 0.258$ OR $b = \frac{6037800 / 7 - 855.29 \times 900}{8190000 / 7 - 900^2} = \frac{92785}{360000} = 0.258$ hence least squares regression line is: $t - \bar{t} = b(a - \bar{a})$ $\Rightarrow t - 855.29 = 0.258 (a - 900)$ $\Rightarrow t = 0.258a + 623$	 B1 for <i>ā</i> and <i>t</i> used (SOI) M1 for attempt at gradient (<i>b</i>) A1 for 0.258 cao M1 for equation of line A1 FT for complete equation 	[5]
	(iv)	 (A) For a = 800, predicted take-off distance = 0.258×800 + 623 = 829 (B) For a = 2500, predicted take-off distance = 0.258×2500 + 623 = 1268 	M1 for at least one prediction attempted A1 for both answers (FT their equation if <i>b</i> >0)	
		Valid relevant comments relating to the predictions such as: First prediction is interpolation so should be reasonable Second prediction is extrapolation and may not be reliable	E1 (first comment) E1 (second comment)	[4]
	(v)	$a = 1200 \Rightarrow$ predicted $t = 0.258 \times 1200 + 623 = 933$ Residual = $923 - 933 = -10$ The residual is negative because the observed value is less than the predicted value.	M1 for prediction M1 for subtraction A1 FT E1 Total	[4] [19]

PMT

					,
2	(i)	P(1 of	10 is faulty)	M1 for coefficient	
		(10)	$1 \times 0.02^{1} \times 0.08^{9} = 0.1667$	M1 for probabilities	
		=	$) \times 0.02^{1} \times 0.98^{9} = 0.1667$	A1	[3]
		(1)	/		
			1 1 11	D1 D1	
	(ii)	n is lai	ge and p is small	B1, B1	
				Allow appropriate	
				numerical ranges	[2]
	(iii)		$0 \times 0.02 = 3$	B1 for mean (soi)	
		(Λ)	$P(X=0) = \tilde{e}^{-3} \frac{3^0}{0!} = 0.0498 (3 \text{ s.f.})$		
		(A)	$\Gamma(X = 0) = C = \frac{-0.0498}{0!} = 0.0498 (3.5.1.)$	M1 for calculation or	
			or from tables $= 0.0498$	use of tables	
				A1	[3]
		<i>(B)</i>	Expected number $= 3$		
			1	B1 expected	
			Using tables: $P(X > 3) = 1 - P(X \le 3)$	no = 3 (soi)	
			= 1 - 0.6472 = 0.3528	M1	
				A1	[3]
	(iv)	(A)	Binomial(2000,0.02)	B1 for binomial	
				B1 for parameters	[2]
		(<i>B</i>)	Use Normal approx with	B1	
			$\mu = np = 2000 \times 0.02 = 40$	B1	
			$\sigma^2 = npq = 2000 \times 0.02 \times 0.98 = 39.2$	B1 for continuity	
				corr.	
			P(K < 50) = P(-50.5 - 40)	M1 for probability	
			$P(X \le 50) = P\left(Z \le \frac{50.5 - 40}{\sqrt{39.2}}\right)$	using correct tail	
				A1 CAO	[5]
			$= P(Z \le 1.677) = \Phi(1.677) = 0.9532$		
		ND D-	isson approximation also accentable for full montre		
		IND PO	isson approximation also acceptable for full marks	Τ	[10]
				Total	[18]
				1	1

January 2010

		TOTAL	[17
		A1 CAO for both	[5]
	$\sigma = 5.124, \mu = 17.69$	two appropriate equations	
	$15 = \mu - 0.5244 \sigma$ 7 = 1.3660 σ	A1 for both correct M1 for attempt to solve	
	$22 = \mu + 0.8416 \sigma$	equation in z, $\mu \& \sigma$	
	$\Phi^{-1}(0.3) = -0.5244, \Phi^{-1}(0.8) = 0.8416$	seen M1 for at least one	
(iv)	From tables, $\Phi^{-1}(0,2) = 0.5244 \Phi^{-1}(0,2) = 0.8416$	B1 for 0.5244 or 0.8416	
	= 0.7784 - 0.7580 = 0.0204	A1 CAO	[4
		of probability calc'	
	$= P(0.7 < Z < 0.7667) = \Phi(0.7667) - \Phi(0.7)$	M1 for correct structure	
	$= P\left(\frac{110.5 - 100}{15} < Z < \frac{111.5 - 100}{15}\right)$	M1 for standardising	
		concentits	
(iii)	P(score = 111) = $P(110.5 < Y < 111.5)$	B1 for both continuity corrections	
	$k = 45.3 + 1.282 \times 11.5 = 60.0$	A1 CAO	[3
	$\frac{k - 45.3}{11.5} = 1.282$	M1 for equation in k	
(ii)	From tables $\Phi^{-1}(0.9) = 1.282$ k - 45.3 = 1.282	B1 for 1.282 seen	
	= 0.6585 - 0.5 =0.1585	M1 A1	[2
	(B) $P(45.3 < X < 50)$	tables penalise the first occurrence only	
		suggest that (s)he appears to have neglected to use the difference column of the Normal distribution	
	= 0.6585	tables NB When a candidate's answers	
	$= \Phi(0.4087)$	A1 CAO inc use of diff	[3
	= P(Z < 0.4087)	M1 for correct structure of probability calc'	
	$= P\left(Z < \frac{50 - 45.3}{11.5}\right)$	M1 for standardising	
	(A) $P(X < 50)$		

PMT

Mark Scheme

January 2010

4	(i)	 H₀: no association between size of business and recycling service used. H₁: some association between size of business and recycling service used. 	B1 for both	[1]
	(ii)	Expected frequency = $78/285 \times 180 = 49.2632$ Contribution = $(52 - 49.2632)^2 / 49.2632$ = 0.1520	M1 A1 M1 for valid attempt at (O-E) ² /E A1 <i>NB Answer given</i> Allow 0.152	[4]
	(iii)	Test statistic $X^2 = 0.6041$ Refer to \mathcal{X}_2^2 Critical value at 5% level = 5.991 Result is not significant There is no evidence to suggest any association between size of business and recycling service used. NB if H ₀ H ₁ reversed, or 'correlation' mentioned in part (i), do not award B1in part (i) or E1 in part (iii).	B1 B1 for 2 deg of f(seen) B1 CAO for cv B1 for not significant E1	[5]
	(iv)	H ₀ : $\mu = 32.8$; H ₁ : $\mu < 32.8$ Where μ denotes the population mean weight of rubbish in the bins. Test statistic = $\frac{30.9 - 32.8}{3.4/\sqrt{50}} = -\frac{1.9}{0.4808} = -3.951$ 5% level 1 tailed critical value of z = -1.645 -3.951 < -1.645 so significant. There is sufficient evidence to reject H ₀ There is evidence to suggest that the weight of rubbish in dustbins has been reduced.	 B1 for use of 32.8 B1 for both correct B1 for definition of μ M1 must include √50 A1 B1 for ±1.645 M1 for sensible comparison leading to a conclusion A1 for conclusion in words in context 	[8]
			TOTAL	[18]